Fast and stable heating and cooling

Peltier-Based Temperature Control

Bo Jakobsen

Department of Science and Environment, Roskilde University

Huginn a RUC - ESS collaboration

RUC

Bo Jakobsen Torben S. Rasmussen Kristine Niss

ESS

Alexander T. Holmes Harald Schneider Anders Pettersson Arno Hiess

Science case

Speed of temperature-change couples to measuring time

- Total measuring time: Limited by the slowest
- Time resolution: Limited by the slowest

Traditional cryostats

- Relatively slow
- Optimized for very low T 0.2
- Indirect sample temperature control

Focus on 100 K to 350 K

- Traditional: Focus on hard matter
- Today: Increased focus on soft and biological matter

0

10

O (Å^{-1.}

Science case

Speed of temperature-change couples to measuring time

- Total measuring time: Limited by the slowest
- Time resolution: Limited by the slowest

Traditional cryostats

- Relatively slow
- Optimized for very low T
- Indirect sample temperature control

Focus on 100 K to 350 K

 Traditional: Focus on hard matter

► Today:

Increased focus on soft and biological matter

Science case

Speed of temperature-change couples to measuring time

- Total measuring time: Limited by the slowest
- Time resolution: Limited by the slowest

Traditional cryostats

- Relatively slow
- Optimized for very low T
- Indirect sample temperature control

Focus on 100 K to 350 K

- Traditional: Focus on hard matter
- ► Today:

Increased focus on soft and biological matter

The Huginn project

Aim of the project is to utilize Peltier elements for temperature control

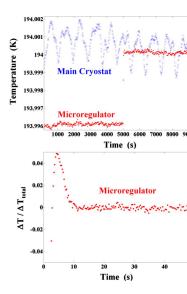
- Providing a sample environment with excellent temperature stability
- Allowing for fast change of temperature

Two different devices have been designed and constructed

- A sub-cryostat insert for use with general purpose sample cells and different outer cryostats
- ► A SANS multi-temperature cuvette holder

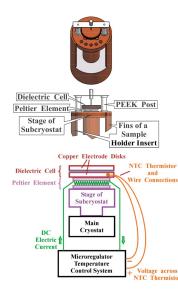
"Huginn: A Peltier-based sub-cryostat for neutron scattering", B. Jakobsen, A. T. Holmes et al., J. of Neutron Research, **21**, 47–57 (2019).

Microregulator developed at Roskilde University


- ► Stable outer cryostat (≈ mK)
- Stability improved a factor 10
- Fast temperature jumps
- Sample and Peltier element in close contact
- Sample and outer cryostat weakly linked
- Controlled from common software framework

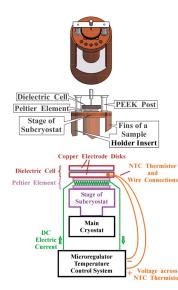
Microregulator

developed at Roskilde University


- ► Stable outer cryostat (≈ mK)
- Stability improved a factor 10
- Fast temperature jumps
- Sample and Peltier element in close contact
- Sample and outer cryostat weakly linked
- Controlled from common software framework

Microregulator

developed at Roskilde University


- ► Stable outer cryostat (≈ mK)
- Stability improved a factor 10
- Fast temperature jumps
- Sample and Peltier element in close contact
- Sample and outer cryostat weakly linked
- Controlled from common software framework

Microregulator

developed at Roskilde University

- ► Stable outer cryostat (≈ mK)
- Stability improved a factor 10
- Fast temperature jumps
- Sample and Peltier element in close contact
- Sample and outer cryostat weakly linked
- Controlled from common software framework

Design process

Three generations of prototypes developed and tested

1st generation Proof of concept

- For low temperature test in RUC cryostat
- For test of Peltier elements
- Search for electronics

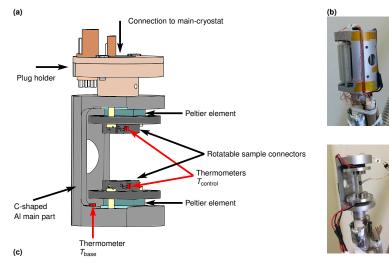
Design process

Three generations of prototypes developed and tested

2nd generation Realistic geometry

- Individually controlled Peltier elements
- Scattering geometry
- Control strategy explored
- Tested using simple liquid cooling

Design process


Three generations of prototypes developed and tested

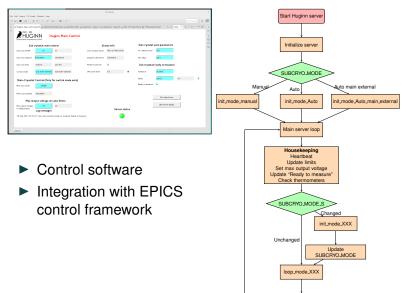
3rd generation For Neutron cryostats

- Final sample cell holder
- Cryostat compatible geometry
- Software and control strategy finalized
- Tested in ESS low-temperature cryostat

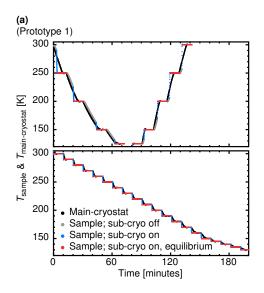
Final design

"Huginn: A Peltier-based sub-cryostat for neutron scattering",

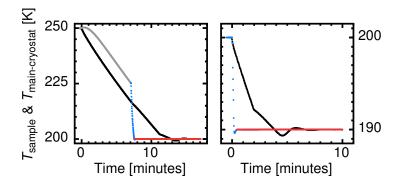
B. Jakobsen, A. T. Holmes et al., J. of Neutron Research, 21, 47-57 (2019).


Peltier driver system

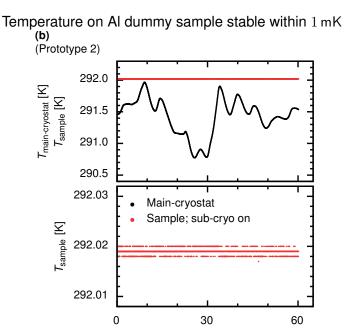
- RUC built Peltier driver cards
- Full rack-mount driver system


Software

End of loop


Performance I

 $20\,\%\text{--}50\,\%$ gain in measuring time



Performance I

 $20\,\%\text{--}50\,\%$ gain in measuring time

Performance II

Performance summary

- ► Working temperature: 100 K to 370 K
- $\pm 5 \text{ K}$ changes in equilibrium within minutes
- Difference from outer cryostat: approximate $\pm 15 \text{ K}$
- Improve stability on the bare cryostat performance by at least an order of magnitude

SANS multi-temperature cuvette holder

SANS multi-temperature cuvette holder

Test at V20 ESS Test Beamline (HZB) performed by staff from ESS and HZB.

Sample environment development

Why sample environment development at RUC

- Physics at RUC has
 - A full professional electronic and mechanical workshop
 - Experience with large scale experience
- Expertise in control software development
- Optimal for prototype development

Possible industry contributions to sample environment development

- Small series production
 - Electronics
 - Mechanical parts (CNC)
- Optimization of design
 - E.g. FEM calculations
 - Optimization for "easy" production

Thank you for your attention

"Huginn: A Peltier-based sub-cryostat for neutron scattering", B. Jakobsen, A. T. Holmes et al., J. of Neutron Research, **21**, 47–57 (2019).